Lyapunov-type inequalities for differential equation involving one-dimensional Minkowski-curvature operator

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Numerical Solution of One Dimensional Schrodinger Equation with Boundary Conditions Involving Fractional Differential Operators

In this paper we study of collocation method with Radial Basis Function to solve one dimensional time dependent Schrodinger equation in an unbounded domain. To this end, we introduce artificial boundaries and reduce the original problem to an initial boundary value problem in a bounded domain with transparent boundary conditions that involves half order fractional derivative in t. Then in three...

متن کامل

LYAPUNOV–TYPE INEQUALITIES FOR HIGHER–ORDER DIFFERENTIAL EQUATIONS WITH ONE–DIMENSIONAL p–LAPLACIAN

In this paper, we establish Lyapunov-type inequalities for a single higher-order differential equation, a cycled system and a coupled system with one-dimensional p -Laplacian. Our result generalize some given results.

متن کامل

Lyapunov-type Inequalities for Differential Equations

Let us consider the linear boundary value problem u′′(x) + a(x)u(x) = 0, x ∈ (0, L), u′(0) = u′(L) = 0, (0.1) where a ∈ Λ0 and Λ0 is defined by Λ0 = {a ∈ L∞(0, L) \ {0} : Z L 0 a(x) dx ≥ 0, (0.1) has nontrivial solutions}. Classical Lyapunov inequality states that Z L 0 a(x) dx > 4/L for any function a ∈ Λ0, where a(x) = max{a(x), 0}. The constant 4/L is optimal. Let us note that Lyapunov inequ...

متن کامل

General Minkowski type and related inequalities for seminormed fuzzy integrals

Minkowski type inequalities for the seminormed fuzzy integrals on abstract spaces are studied in a rather general form. Also related inequalities to Minkowski type inequality for the seminormed fuzzy integrals on abstract spaces are studied. Several examples are given to illustrate the validity of theorems. Some results on Chebyshev and Minkowski type inequalities are obtained.

متن کامل

Integral Identities and Minkowski Type Inequalities Involving Schouten Tensor

New formulas for the integration of the k-th elementary symmetric functions of the Shouten tensor are derived and applied to deduce some Minkowski type inequalities.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Inequalities

سال: 2021

ISSN: 1846-579X

DOI: 10.7153/jmi-2021-15-43